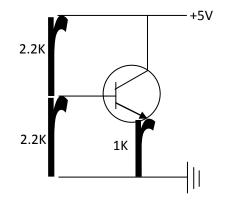
RAMAKRISHNA MISSION VIDYAMANDIRA

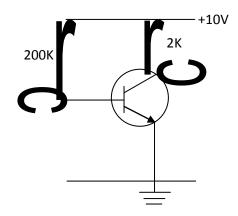
(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FOURTH SEMESTER EXAMINATION, MAY 2017 SECOND YEAR [BATCH 2015-18] **PHYSICS (Honours)** Paper : IV

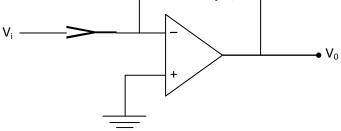

Full Marks : 100

[Use a separate Answer Book for each group]

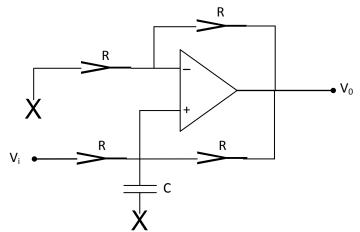
<u>Group – A</u>


	An	swer any seven questions from Question Nos. 1 to 11 :	[7 X 10]
1.	a)	What is a parallel resonant circuit? State its characteristics and uses.	1+2
	b)	Define Q-factor. How does the selectivity depend on the Q-factor?	1+2
	c)	An ac supply of emf 50V (rms) at a frequency 1 KHz is connected across an inductance of 100	
		mH and a resistance of 2 K Ω in series. Find the potential difference across the inductance and	
		the resistance. Is sum of them equal to 50 V? If not, explain why?	2+2
2.	a)	A box, containing an inductor of negligible resistance, a capacitor and a resistor connected in a	
		definite fashion, is provided with two terminals. When a potential of 100V (dc) is applied	
		between the terminals, a current of 0.1 amp flows. When a source of ac voltage of 100V (rms),	
		50 Hz is connected, 1.0 amp (rms) flows. Maintaining the ac voltage constant, if the frequency	
		is increased, the current rises to a maximum at 1 KHz. How are the three components	
		connected inside the box and what are the values of the components?	6
	b)	Why a filter is used with a rectifier? Explain the operation of a capacitor filter briefly.	2
	c)	Estimate the maximum 'no load' voltage of a full wave ideal diode rectifier without and with a	
		capacitor filter (having high capacitance value). The ac input rms voltage is V_0 volt.	2
3.	a)	What are the basic requirements for getting steady oscillation at a fixed frequency from an	
		oscillator?	2
	b)	Explain the operation of a Wien-Bridge oscillator with the help of its circuit diagram.	3
	c)	In the oscillator the source of oscillation is the noise in the circuit with wide frequency range.	
		Then explain how do you get an output ac of specific frequency?	2
		Mention two advantages of crystal oscillator.	1
	e)	A Colpitt oscillator uses a tank circuit with $L = 10 \text{ mH}$, $C_1 = 300 \text{ pF}$ and $C_2 = 200 \text{ pF}$. What is the frequency of oscillation?	2
		the nequency of obernation.	2
4.	a)	Derive an expression for an FM wave with sinusoidal modulating signal. Obtain the frequency	
		modulation index for the above case.	3+1
	b)	Distinguish between AM and FM signals.	2
	c)	Draw the circuit diagram of an AM envelope detector with input and output waveforms.	2
	d)	Determine the audio power necessary to amplitude modulate a 10 KW carrier to a depth of modulation of 60%.	2
5.	a)	Show that a self bias circuit is superior to a fixed bias circuit.	6
	b)	In the circuit shown the transistor is made of Si. Will the biasing circuit shown place it in active	
		region? If no, explain the situation and find the base current. Assume $\beta = 100$.	4

Date : 18/05/2017 Time : 11 am – 3 pm


- 6. a) Define the four h-parameters in an h-parameter equivalent circuit of a transistor. Which of them can be neglected in a simplified model and why?4+2
 - b) Using simplified h-parameter model determine input impedance, output impedance, voltage gain and current gain of the following circuit.

4



Given $h_{fe} = 100$, $h_{ie} = 1.1 \text{ K}\Omega$

7.	a)	Define the pinch off voltage of a JFET. BJT is a current controlled device but JFET is a voltage	
		controlled device — explain the statement.	1+2
	b)	Obtain an expression for the voltage gain of a common source JFET amplifier.	4
	c)	What is the difference between the depletion and enhancement type MSOFET? Explain how a	
		depletion type MOSFET can be used as both enhancement and depletion mode. Also draw the	
		output characteristics for both cases.	3
8	a)	Distinguish between combinational and sequential logic circuit.	2
0.		Explain how the phase difference between two sinusoidal a.c. signals of same frequency can be	
	0)		2
		measured by a CRO using Lissajous figure.	3
	c)	Determine the output voltage of the following circuit:	2

- d) A ramp voltage of 2 volt/ms (pure ac signal of frequency 1 KHz) is applied to an OP-Amp differentiator with $R = 2 \text{ K}\Omega$ and $C = 0.01 \mu\text{F}$. Find the output voltage and waveform with timing diagram.
- 9. a) How NOR gates can be used to construct RS Flip-Flop, give its truth table. Give circuit diagram of Master-Slave Flip-Flip using NOR gates.
 2+1+2
 - b) Give a block diagram of binary ripple counter. Draw the output waveform after 5th and 9th pulse. Mention some of its uses.
 2+2+1
- 10. a) What is a digital full adder? Design and draw its circuit diagram. Can it be used as subtractor? 1+3+1+2
 - b) Can the following circuit be used as a non-inverting integrator? Explain.

- 11. a) Distinguish between class A, B, AB and C power amplifiers. Mention uses of different classes in practical applications.
 b) Draw the circuit diagram of a transformer coupled class-A power amplifier using transistor. Explain the role of transformer. Derive efficiency for such an amplifier.
 1+1+2
 - c) How does a transformerless class-B amplifier can be designed?

<u>Group – B</u>

Answer any three questions from Question Nos. 12 to 16 :

- 12. a) What is meant by 'thermodynamic process'? How is it represented on an indicator diagram?
 - b) Calculate the work required to blow a spherical soap bubble of radius r in an isothermal, quasistatic process in the atmosphere.
 - c) Show that the entropy is a state function.
 - d) 20 gm of hydrogen gas at 27°C are compressed isothermally to one-fourth of the original volume. Find the amount of work done.
- 13. a) State Clausius theorem and discuss briefly the concept of entropy.
 - b) 1 Kg of water is heated in two ways, from 273 K to 373 K. (i) Firstly by bringing it in contact with a heat reservoir at temperature 373 K. (ii) Secondly into two steps firstly by bringing it in contact with a heat reservoir at temperature 323K and then by bringing it in content with a reservoir at temperature 373K. Calculate the change in entropy of the universe in two cases. Assume that the specific heat of water is 4200J/Kg and temperature of reservoir does not change due to flow of heat.

3

3

[3×10]

3

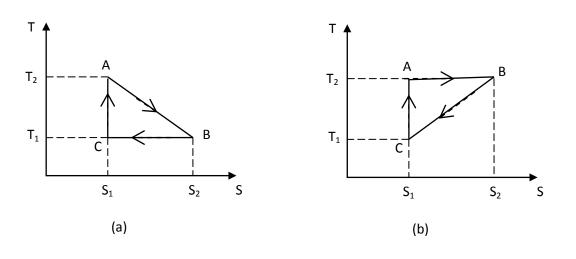
2

3

2

3

2


	Suggest a method from the above result that there is a no change of entropy of the universe while heating the water from 273K to 373K.	2+2+1
c)	Establish the 'principle of increase in entropy' for a non-static irreversible process.	2
	Distinguish between first order and second order phase transition.	3
b)	Derive an equation for the phase boundary of the liquid and gas phases under the assumptions that the latent heat L is temperature independent, that the vapour can be treated as an ideal gas,	
	and $V_{vapour} = V \gg V_{liquid}$.	3
c)	Show that $\frac{dL}{dT} = \frac{L}{T} + C_2 - C_1$ where C_1 and C_2 are specific heat of first and second phase under	
	saturated condition and L is the latent heat at the temperature T .	4
15. a)	What are the basic differences between adiabatic expansion and Joule Thomson (J.T) expansion?	3
b)	Obtain an expression for Joule Thomson coefficient. What do you mean by the inversion temperature of a gas undergoing Joule-Thomson expansion? Why some gases are cooled down	
	on J-T expansion while other gets warm on same expansion?	3+1+1
c)	Find out the inversion temperature for a gas obeying the following equation of state:	2
	$p(v-b) = RT \exp(-\frac{a}{RTV})$, where <i>a</i> and <i>b</i> are constants.	
16. a)	Define emissive power and absorptive power of a substance in connection with thermal radiation.	2
b)	Show that for a system undergoing processes at constant pressure and temperature the Gibb's	

b) Show that for a system undergoing processes at constant pressure and temperature the Gibb's free energy will be minimum.

4

4

c) Compare the efficiencies of the cycles ABCA as shown in the figures below:

_____ × _____